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A three-dimensional digitized image of a porous magnetic gel is determined by x-ray microtomographic
techniques. The complex connected pore-space topology is quantitatively characterized by measuring a variety
of statistical correlation functions, including the chord-length distribution function, the pore-size distribution
function, and the lineal-path function. This structural information is then employed to estimate transport
properties, such as the fluid permeability and trapping rate, of the gel.@S1063-651X~96!06408-2#

PACS number~s!: 61.20.2p, 05.20.2y

I. INTRODUCTION

Two-phase random media, such as composite materials,
dispersions, and porous media, are of great technological im-
portance. The transport and mechanical properties of such a
random material depend on an infinite set ofn-point corre-
lation functions that statistically characterize the structure
@1–3#. Generally, such complete morphological information
is not available. However, by using only the lower-order
correlation function information, one can obtain rigorous
bounds on many of the properties of the random materials
@1–10#, which are often very sharp and their use is limited
only by one’s ability to extract the lower-order correlation
functions for the random materials. The preponderance of
such work has been carried out for theoretical model micro-
structures.

It has recently become possible to obtain two- and three-
dimensional microstructural phase information using a vari-
ety of experimental techniques. Such techniques include
transmission microscopy@11#, scanning tunneling electron
microscopy@12#, synchrotron-based tomography@13#, and
confocal microscopy@14#. These techniques have the advan-
tage of giving high-resolution images and being nondestruc-
tive, allowing results to be checked by other means. Re-
cently, microtomographic methods in particular have been
used to study the structure and properties of sandstones
@15,16#.

In this paper we analyze a three-dimensional digitized im-
age of a magnetic gel obtained via x-ray microtomographic
techniques. This sample is ideally suited for a tomographic
analysis since it is too fragile to be characterized~structurally
and for its bulk properties! using standard experimental tech-
niques. The gels were synthesized for the purpose of filtra-
tion and separation of labeled rare biological cells@17#. We
ascertain a number of different correlation functions, some of
which are experimentally obtainable from lineal, plane,
and/or volume measurements. The most basic and simplest
quantities are thevolume fraction of phase i,f i , andspecific
surface ~the interfacial surface area per unit volume! s.

Higher-order statistical correlation functions are extracted,
including quantities that contain the important topological
property of connectedness of the phases. A determination of
the transport properties of fluids within the porous gels from
purely structural measurements would be useful in designing
new porous materials that are designed for specific applica-
tions. The statistical measures extracted here are crucial in
determining a variety of transport and mechanical properties
of the gels. It is also advantageous to have a means of deter-
mining the transport properties of materials that may be too
delicate or too small for standard tests.

The paper is organized as follows. A description of the
preparation of the gel sample and x-ray microtomographic
techniques is given in Sec. II. The relevant correlation func-
tions and their relationships to physical properties are dis-
cussed in Sec. III. In Sec. IV we give the results of the
computer analysis of the sample and extract some of the
length scales involved in the problem. Section V contains a
discussion of the results. Finally, we make concluding re-
marks in Sec. VI.

II. SAMPLE PREPARATION AND X-RAY TOMOGRAPHY

A. Sample preparation

The preparation of the gel has been described by Junet al.
@17#. First, a silica gel was prepared by mixing tetraethoxysi-
lane ~TEOS!, ethanol, and water in the volumetric propor-
tions 1.5:1:1. The incipient gel was stirred for 24 h using a
magnetic stirrer, then mixed with a ferrofluid~product EMG
705, Ferrofluidics! composed of'100-Å magnetite par-
ticles in aqueous suspension. Porosity at the micrometer
scale was controlled in the gel by mixing the ferrofluid-
TEOS gel with a suspension of monosized polystyrene beads
~Duke Scientific!, using the method of Sonuparlak and Ak-
say@18#. Samples of continuous porosity were also obtained
by incorporating pyrolizable cellulose fibers in the gel. Ad-
dition of the ferrofluid induced gelation in the TEOS solu-
tion, but homogeneity was maintained by shaking the mix-
ture until the gel had set. The gel was then cured to form a
coherent silica-magnetite-pyrolite composite. Supercritical
extraction was used to remove ethanol and water
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from the gel. The pyrolyzable materials were burned out un-
der air at 300 °C, a process that partially oxidized the mag-
netite particles. Sintering the gel under dry nitrogen at
700 °C for 3 h both partially sintered the gel, imparting
greater structural integrity, and reversed the oxidation of the
magnetite particles. Shrinkage during sintering was minimal.
A three-dimensional ‘‘negative’’ of the resulting gel image is
shown in Fig. 1. In this case, the void region is shown as
solid in order to present a better picture of the connectedness
of the void region.

B. X-ray microtomography

Much early work on the morphology of heterogeneous
materials was done via techniques such as sectioning. This
approach is unsatisfactory, especially in biomedical applica-
tions, not only because it destroys the sample but it also
often causes the sections themselves to be altered during the
sectioning process. In order to overcome these problems,
noninvasive techniques have been developed. CAT scans are
a very common way to obtain three-dimensional phase infor-
mation, especially in the medical field. However, the resolu-
tion obtained is approximately;100mm, so they cannot be
used when the length scales of the microstructure of interest
are smaller than this.

X-ray microtomography@13,19–21# provides a means to
have both high-resolution and nondestructive evaluation of
three-dimensional structural information. The microtomogra-
phy data and reconstructed three-dimensional maps of the
gel x-ray opacity were collected using beam line X2B lo-
cated at the National Synchrotron Light Source of
Brookhaven National Laboratory. Beam line X2B was spe-
cifically developed for x-ray microtomography experiments
by Exxon Research and Engineering@21,22#. White bending
magnet radiation~3-mrad divergence! passes through a Be
window into the experimental hutch, where it is diffracted in
the horizontal plane by a Si~111! monochromator. The
samples were scanned with an x-ray beam energy of 17 keV.

The monochromatic beam passes through the sample and
onto the photo-optic detector. The resolution of the x-ray
microtomographic process is typically on the order of a few
micrometers and is usually limited by the process in which
the transmitted x rays are measured. We used the Exxon
detector, a single crystal phosphor imaged by a microscope
objective onto a charge coupled device~CCD!. The combi-
nation of a 43 lens with a 27-mm CCD pixel gives a spatial
resolution in the initial images~before reconstruction! of
6.75mm. Some images were also obtained using a 103 lens,
which provides a spatial resolution of 2.75mm, although
these images were not used in this study. The reconstruction
of the tomographic images was carried out using direct Fou-
rier inversion, with an algorithm developed by scientists at
Exxon Research and Engineering. The resulting data set
gives the three-dimensional x-ray opacity of the sample, pro-
portional to the electron density. The reconstruction is done
one two-dimensional plane or ‘‘slice’’ at a time, with the
data for each slice taken by rotating the sample through
180° and storing the ratio of the incident x-ray flux to that
transmitted through the sample.

The digitized image of the gel was stored as a 5123512
3512 matrix of values, but not all of the voxels contained
information, due to the thin, cylindrical shape of the sample.
The actual information was contained in a rectangular paral-
lelepiped of voxels whose dimensions were 1683168
3512. The values stored in these voxels~which corre-
sponded to the electron densities in the sample! were then
binned and the two phases showed up as two peaks in a
histogram of the electron density values. Once a cutoff value
was determined to distinguish the phases, the sample was
stored as a matrix of bits, corresponding to values of either 0
~matrix phase! or 1 ~void phase!. This resulted in a factor of
16 reduction in size over the original image, which used
short integers to store the data instead of bits.

III. STATISTICAL CORRELATION FUNCTIONS

For statistically homogeneous media, the simplest mor-
phological quantities are the porosityf1 ~volume fraction of
phase 1! and the specific surfaces ~interfacial area per unit
volume!. A commonly employed higher-order correlation
function is the so-called two-point probability function
S2
( i )(x1 ,x2), which gives the probability of finding two points
at x1 and x2 in phasei @23#. This quantity has been exten-
sively studied theoretically@1,3,4,23# and experimentally
@16,24#. It has two undesirable features. First, it is not ca-
pable of distinguishing between the separate length scales
associated with phase 1 and phase 2 material@1,23#. Second,
rigorous bounds on transport properties that depend onS2

( i )

@7,8,16# are typically very weak. With additional computa-
tional effort, one can obtain three-point versions of this
quantity, which often provide useful estimates of the effec-
tive conductivities and elastic moduli of composites@1–3#.

In light of the above discussion we turn our attention to
three other ‘‘two-point’’ statistical measures:~i! the lineal-
path function L( i )(x), ~ii ! thechord-length distribution func-
tion p( i )(x), and ~iii ! the pore-size distribution function
P( i )x. In each of these cases, the superscripti refers to phase
i ( i 5 1 or 2!, where phase 1 refers to the void phase and
phase 2 refers to the solid phase. Each of these functions not

FIG. 1. ‘‘Negative’’ of the magnetic gel sample. In this picture,
the void is shown as filled to give a better sense of the connectivity
of the void structure.
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only can distinguish between phase 1 and phase 2 material
but they also contain some information about theconnected-
nessof the phases. The three functions are graphically illus-
trated in Fig. 2.

A. Lineal-path and chord-length functions

Lu and Torquato@25# introduced the so-calledlineal-path
function L( i )(z), which gives the probability of finding a line
segment of length wholly contained in phasei . This function
is similar toS2

( i )(r ) in that it requires two points at a distance
r to fall in the same phase, but it also requires all points that
lie on a line between them to fall in the same phase. Thus it
contains connectedness informationalong a lineal path.
There is also a stereological interpretation ofL ( i )(x): it is the
area fraction of phasei measured from the projected image
of a three-dimensional slab of thicknessz onto a plane. A
useful length scale is

lA
~ i !5S E

0

`

xL~ i !~x!dxD 1/2, ~1!

which is just the first moment ofL ( i )(x). This length scale
has been shown to provide a rough measure of average clus-
ter sizes in bicontinuous media@26#.

A related morphological measure is thechord-length dis-
tribution function p( i )(x) @27#. The quantityp( i )(x)dx is the
probability of finding a chord of length betweenx and
x1dx lying entirely in phasei . Chords are defined as the
segments formed by the intersection of lines with the inter-
face between the two phases. The chord-length distribution
function is of importance in fluid transport in porous media
@28# and in discrete free-path transport@29,30#. It has been
shown by Torquato and Lu@27# that p( i )(x) is related to
L ( i )(x) by the relation

p~ i !~x!5
lC

f i

d2L ~ i !~x!

dx2
, ~2!

where the length scalelC is defined as the first moment of
the chord length distribution function

lC
~ i !5E

0

`

xp~ i !~x!dz. ~3!

B. Pore-size distribution function

While the chord-length distribution function can give
some notion of the ‘‘length’’ of the pores in a porous me-
dium, one can also define a distribution functionP( i )(x),
which characterizes the ‘‘radius’’ of the pores~or material!
in phasei . This function is known as thepore-size distribu-
tion function. It is defined such thatP( i )(x)dx is the prob-
ability that a randomly chosen point in the phase of interest
~usually a void phase! lies at a distance betweenx and
x1dx of the nearest point on the interface between the two
phases@10#.

Given this definition, we can write down explicitly

P~ i !~0!5
s

f i
, P~ i !~`!50. ~4!

Thenth moment of this distribution̂xn& is defined as

^xn&5E
0

`

xnP~x!dx. ~5!

This allows us to define another length scalelD, which is the
first moment of the distribution

lD
~ i !5^x&5E

0

`

xP~ i !~x!dx. ~6!

The length scalelD
( i ) is a measure of the characteristic pore

size.
The cumulative distribution function F( i )(x) associated

with P( i )(x) is defined by

F ~ i !~x!5E
x

`

P~ i !~z!dz, ~7!

with

F ~ i !~0!51, F ~ i !~`!50. ~8!

F ( i )(x) is the fraction of pore space that has a pore diameter
greater thanx. This is equivalently the probability that, given
a point in the void, one can place a sphere of radiusx cen-
tered at that point, lying entirely in the void. ThusF ( i )(x)
and thereforeP( i )(x) are intrinsically three-dimensional
measures as they provide connectedness information regard-
ing spherical regions of radiusx in the medium@31#. Conse-
quently, only three-dimensional imaging techniques, such as
tomography or confocal microscopy, can yield such informa-
tion.

Equation~7! allows us an alternative way to define the
momentŝ xn& as

^xn&5nE
0

`

xn21F ~ i !~x!dx. ~9!

Specifically, the mean pore size may also be defined in terms
of the cumulative pore-size distribution function

lD
~ i !5E

0

`

F ~ i !~x!dx. ~10!

FIG. 2. Graphical description of the statistical correlation func-
tions calculated in this paper:~a! shows the lineal-path function
L(x) as defined for both phases, as well as the probability of a line
of lengthx lying in both phases.~b! shows the chords formed by an
arbitrary line in the sample. The chords defined this way comprise
the chord-length distribution functionp( i )(x). Finally, ~c! shows
how the pore-size distributionP( i )(x) is calculated as the distribu-
tion of distances a random point is from the nearest interface.
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C. Analytical expressions for overlapping spheres

An important theoretical model microstructure of hetero-
geneous media is the overlapping sphere model. In this
model, the random medium is constructed by adding identi-
cal spatially uncorrelated spheres of radiusR to a system to
form a two-phase system. Because the spheres overlap, the
total volume fraction of the sphere phase, say phase 2, is
generally not equal to the sum of the volume fraction of each
individual sphere. The porosity and specific surface are given
by

f15e2h ~11!

and

s5
3hf1

R
, ~12!

respectively, where

h5r
4p

3
R3, ~13!

h is the reduced density, andr is the number density of
spheres. It should be noted that whilef2<1,h can be larger
than unity.

The lineal-path function and chord-length distribution for
the void phase of a system of overlapping spheres of radius
R are given by the expressions@25,27#

L ~1!~z!5f1
113z/4R ~14!

and

p~1!~z!52
3

4R
ln~f1!f1

3z/4R. ~15!

Substitution of the expression for the chord-length distribu-
tion of the overlapping sphere system into Eq.~3! gives the
expression forlC for that system,

lC
~1!52

4R

3ln~f1!
. ~16!

Finally, the expression for the pore-size distribution in the
overlapping-sphere system@10# is

P~1!~x!5
3h

f1R
S xR11D 2expF2hS xR11D 3G . ~17!

Note that forx50, we just recover the specific surfaces, as
given in Eq.~12!, divided by a factor off1.

D. Mean survival time

The mean survival timet ~obtainable from a NMR ex-
periment@32,33#! is the average time a Brownian or diffus-
ing particle takes to diffuse in a trap-free region~with diffu-
sion coefficientD) in a system of partially absorbing traps
before becoming absorbed by the trapping phase. Therefore,
the quantityDt provides an average pore-size measure. Note
that the inverse oft is sometimes referred to as the ‘‘trap-
ping rate.’’

The mean survival timet for perfectly absorbing traps
has been rigorously bounded from below in terms of the
mean pore sizelD @10# via the relation

t>lD
2 /D, ~18!

whereD is the diffusion coefficient andlD is given by Eq.
~6! with i51.

Torquato@34# developed a rigorous cross-property rela-
tion that relates the fluid permeabilityk to the mean survival
time t as

k<f1Dt. ~19!

Thus a measurement of the mean survival time provides an
upper bound on the fluid permeability. Relation~19! be-
comes an equality for transport interior to parallel tubes of
arbitrary cross section~in the direction of the tubes!. The
bound~19! is relatively sharp for flow around dilute arrays of
obstacles, e.g., for spheresk52Df1t/3. For a cubic array of
narrow tubes it is less sharp:k5Df1t/3. Generally, inequal-
ity ~19! is not sharp becauset is a reflection of the entire
pore space, whereask is a reflection of the dynamically con-
nected part of the pore space.

Avellaneda and Torquato@35# derived the rigorous equal-
ity connecting the permeability to the effective electrical
conductivityse of a porous medium containing a conducting
fluid of conductivitys1 and an insulating solid phase:

k5
L2

8F
, ~20!

whereF5s1 /se is the formation factor andL is a length
parameter that is a weighted sum over the viscous relaxation
times associated with the time-dependent Stokes equations.

Since it is difficult to obtainL2 exactly, rigorous treat-
ments can only provide bounds onL2. It has been conjec-
tured@36# that for isotropic media possessing an arbitrary but
connected pore space, the following relation holds:

k<
Dt

F
. ~21!

Because the right-hand side of~21! appears to overesti-
matek by roughly a factor of porosityf1 for a number of
porous media, it has been proposed@37# that the approximate
relation

k'f1

Dt

F
~22!

should be accurate for a large class of porous media. Re-
cently, it was found that~22! provided a good estimate of the
permeability of a Fountainbleau sandstone@16#. This relation
will be applied in the subsequent section.

It should be noted that the approximate formula

k5
L2

8F
, ~23!

developed by Johnsonet al. @38#, provides a good estimate
of k for a variety of media. HereL2 is a dynamically
weighted ratio of pore volume to surface area that involves
the electric field. However, theL parameter, to date, has not
been experimentally measured.
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IV. RESULTS

The porosityf1 of the sample was measured to be 0.44.
We note here that the porosity was not constant along the
axis of the cylinder, but fluctuated appreciably, indicating the
presence of inhomogeneities in the sample. We have chosen
to use these formulas defined for homogeneous media since
there is no comprehensive theory to account for the inhomo-
geneities and because the overall structure did still show a
significant amount of homogeneity. The specific surfaces
was also measured and found to be 0.033mm21. It should be
noted that, in general, the specific surface of a digitized im-
age of real material is smaller than the actual specific surface
of the material. This is due to the roughness of the surface at
length scales smaller than that of the digitization process.
This differs from the case of the digitization of an object
with a smooth surface, such as a sphere, in which the specific
surface of the digitized image is larger than the specific sur-
face of the original object.

In Fig. 3 the lineal-path function is shown for both the
void phase and solid phase, along with the probability that a
line segment of lengthx falls in both phasesL (s)(x). These
three plots must add to unity for allx. The void result is
compared to the result for an overlapping sphere system with
a similar volume fraction. The radiusR of the spheres in the
overlapping sphere system was determined by fitting the data
to the analytical result for the overlapping sphere system,
with the constraint that the volume fraction remains the
same. This gives a value ofR547.3mm. The fit also shows
the difference betweenL (1)(x) in the gel and the void phase
in the overlapping sphere system. We can see that the gel
system decays faster for smallz, so there are fewer short-
range correlations. For largex, L (1)(x) is larger for the gel
system, indicating that there are more larger voids in the gel
system than in the overlapping sphere system. Using the data
for L ( i )(x), we can calculate a value oflA

(1)553.8 mm and
lA
(2)576.5mm.

The measurement ofp( i )(x) was a bit trickier, due to the
digitized nature of the media. The bin widths had to be kept
significantly larger due to the noise associated with the
chords crossing diagonally across a series of voxels and cre-
ating a large number of small chords whose origin is simply
an artifact of the digitization. The result is shown in Fig. 4
for the distribution in both the void and gel phase. The dis-
tributions are quite similar, unlike the lineal-path functions,
mostly because they both must be normalized to unity. Still,
the similarity in the two phases is striking, given that they
have somewhat different volume fractions. Integratingx
timesp( i )(x) to get the first moment of each distribution, we
get a value oflC

(1)567.4mm andlC
(2)567.9mm.

The pore-size distributionP( i )(x) for both phases is pre-
sented in Fig. 5 as a function ofx. One must take care in
interpreting the results displayed in this graph. This is not a

FIG. 3. Lineal-path functionL( i )(x) for the void phase, solid
phase, and the ‘‘mixed’’ phase, in which the random line segment
falls in both phases. The result forL (1)(x) in the overlapping sphere
system with an equivalent value off1 is also shown.

FIG. 4. Chord-length distribution functionsp( i )(x) for the two
phases of the magnetic gel.

FIG. 5. Pore-size distributionP( i )(x) as a function ofx for the
magnetic gel sample. The pore-size distribution for the void phase
of the overlapping sphere system is shown. The overlapping sphere
system was chosen with an equivalent value ofP(1)(0) correspond-
ing to an equivalent value ofs/f1.
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distribution of the widths of an average pore in the system,
but instead a distribution of how far a random spot in phase
i in the system is from the nearest wall. To emphasize how
these are different, consider two spherical holes in the system
of radiusR1 andR2, whereR1,R2. The random points in
R1 will only contribute toP

(1)(x) for small values ofx. The
random points forR2 will contribute for larger values ofx,
but they also contribute to the smaller values ofx and, in
fact, they make a larger contribution to those smaller values
of x due to the fact that the ‘‘volume’’ of the spherical shell,
which is a distancex away from the nearest wall, will be
larger. Calculating the first moment of the distributions of
P( i ) above, we obtain a value oflD

(1)510.7 mm and
lD
(2)515.7mm. We can check the accuracy of our measure-

ment by noting thatP(1)(0)f1 gives a value close to the
value of the specific surfaces.

A plot of the pore-size distribution for an overlapping
sphere system is shown in Fig. 5 along with the real physical
system. The theoretical curve was chosen to have the same
value ofP(1)(0) as the gel system, corresponding to having
an equivalent value of the ratio of the specific surface to the
void volume fraction. Specifying the specific surface auto-
matically determines the radius of the spheres in the overlap-
ping sphere system, which in this case is 32.0mm. The plot
for the theoretical system differs from that of the experimen-
tal system in that it is weighted more heavily towards smaller
values ofx. This shows that the gel system has a broader
distribution of pore sizes than the theoretical system. This is
similar to what is seen in the plot ofL (1)(x).

The numerical value of the mean survival timet was
calculated using thefirst-passage cubealgorithm discussed
in @39#. Specifically, we foundtD'242.6 mm2. There is
significant variation in the numerical value oft down the
length of the sample. This was partially due to the variation
in f1, as was seen by the correlation betweenf1 andtD as
a function of slice, and partially due to the variability of the
structure along the length of the sample.

Let us now consider estimating the effective transport
properties of the gel. The average value oftD is
'242.6mm2. It is interesting to compare this value to the
rigorous lower bound~18!. Since lD

(1)25114.5mm2, it is
found thattD must be greater than 114.5mm2. The ratio of
the calculated value oftD to the bound is'2. Although this
bound is not as tight as one would like, this is very close to

the ratio in the overlapping sphere system, where the same
ratio atf150.44 is 1.68@10#, indicating that the degree of
inhomogeneity in the system does not affect the bound that
much.

Now consider estimating the fluid permeabilityk using
cross-property relation~22!. In addition to our measured po-
rosity f150.44 and mean survival timet'242.6mm2/D,
we need to estimate the formation factorF5(se /s1)

21.
Following Ref.@18#, we shall do this by obtaining a rigorous
upper bound estimate ofF215se /s1. Here we use the well-
known Hashin-Shtrikman upper bound

se

s1
<

f1

11f2/2
50.344. ~24!

Application of relation~22! yields

k'83.5mm2. ~25!

Note that this permeability estimate is close in value to the
square of the mean pore sizelD

(1)25114.5mm2.

V. CONCLUSIONS

X-ray microtomographic techniques have enabled us to
image in three dimensions the complex connected pore space
of a porous magnetic gel. We studied three statistical mea-
sures that to some degree reflected connectedness informa-
tion about the pore and solid phases. In particular, the pore-
size distribution, an intrinsically three-dimensional measure,
enabled us to bound the trapping ratet21 of the gel. More-
over, a direct simulation oft and bound on the formation
factorF enabled us to estimate the fluid permeabilityk using
cross-property relations. Estimating the transport properties
in this noninvasive fashion is especially useful if the sample
is too small or fragile to be characterized using standard
experimental procedures, as was the case in our gel sample.
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